A new approach for automatic sleep scoring: Combining Taguchi based complex-valued neural network and complex wavelet transform

نویسنده

  • Musa Peker
چکیده

Automatic classification of sleep stages is one of the most important methods used for diagnostic procedures in psychiatry and neurology. This method, which has been developed by sleep specialists, is a time-consuming and difficult process. Generally, electroencephalogram (EEG) signals are used in sleep scoring. In this study, a new complex classifier-based approach is presented for automatic sleep scoring using EEG signals. In this context, complex-valued methods were utilized in the feature selection and classification stages. In the feature selection stage, features of EEG data were extracted with the help of a dual tree complex wavelet transform (DTCWT). In the next phase, five statistical features were obtained. These features are classified using complex-valued neural network (CVANN) algorithm. The Taguchi method was used in order to determine the effective parameter values in this CVANN. The aim was to develop a stable model involving parameter optimization. Different statistical parameters were utilized in the evaluation phase. Also, results were obtained in terms of two different sleep standards. In the study in which a 2nd level DTCWT and CVANN hybrid model was used, 93.84% accuracy rate was obtained according to the Rechtschaffen & Kales (R&K) standard, while a 95.42% accuracy rate was obtained according to the American Academy of Sleep Medicine (AASM) standard. Complex-valued classifiers were found to be promising in terms of the automatic sleep scoring and EEG data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-Complex Detection Based on Synchrosqueezing Transform

K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...

متن کامل

Using PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Combining Neural Network and Wavelet Transform to Predict Drought in Iran Using MODIS and TRMM Satellite Data

The drought can be described as a natural disaster in each region. In this study, one of the important factors in drought, vegetation, has been considered. For this purpose, monthly vegetation cover images and snow cover data of MODIS and TRMM satellite precipitation product from 2009 to 2018 were used for the study area of Iran. After initial preprocessing, we have used artificial neural netwo...

متن کامل

GENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK

The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2016